
WELL ALMOST

EVERYTHING YOU WANTED
TO KNOW ABOUT

EXTENDED ATTRIBUTES

EXTENDED ATTRIBUTES
• Extended attributes form an important part of OS/2 -

eCS. In this presentation:
– what EA's are
– relationship to the file system
– types
– uses
– pitfalls
– standard and common EA's
– EA utilities
– API's
– structure
– some references on how to program EA's

Warpstock Europe Munich 2015 205-06-15

ATTRIBUTES

• In OS/2 and other systems we have
attributes and extended attributes

• The standard attributes are:
- system
- read only
- archive
- hidden

Extended attributes

• Extended attributes are:

file system features that enables users to
associate computer files with metadata not
interpreted by the file system, whereas
regular attributes have a purpose strictly
defined by the file system (such as
permissions or records of creation and
modification times).

NOTE : A DIRECTORY IS ALSO A FILE IN THIS CONTEXT

 AND MAY HAVE EA’S

Extended attributes

• IN OS/2 The number of EA’s per file is not limited

• But the total size of all EA’s associated with one
file is limited to 64K!

Extended attributes

• Extended attributes are available in:
– AIX
– Linux (if enabled in the kernel)
– OS/2
• FAT indirectly using the file "EA DATA. SF“
• FAT32 (if /EAS is used in the driver!)
• JFS
• HPFS

– FreeBSD
– OS/X
– Solaris
– Windows

Extended attributes non FAT

• In both HPFS and JFS the EA is part of the file
itself.

• In HPFS for example if the EAs associated with a
given file or directory are small enough, they will
be stored right in the Fnode. If the total size of
the EAs is too large, they are stored outside the
Fnode in sector runs, and a B+ Tree of allocation
sectors can be created to describe the runs. If a
single EA gets too large, it can be pushed outside
the Fnode into a B+ Tree of its own.

Extended attributes in FAT

• Fat Directory Entry is 32 bytes and has the
following structure:

– Filename: 8 bytes (0 – 7)
– Extension: 3 bytes (8 – 10)
– Attributes: 1 byte (11)
– Reserved: 10 bytes (12-21)
– Time 2 bytes (22-23)
– Date 2 bytes (24-25)
– Fat cluster 2 bytes (26-27)
– Size 4 bytes (28-31)

Extended attributes FAT

• In os2 the FAT directory reserved entry (bytes 12-
21) is used to point to the EA data.

• The last two bytes (20 & 21) point to the clusters
containing the EA .

• The file "EA DATA. SF“ is used to hold or own the
allocation of the EA data

Extended attributes FAT32

• In os2 the FAT directory reserved entry (bytes 12-
21) is used to indicate that there is EA data.

• The EA is contained in an additional file with the
same name as the original file but with the
suffix :

 “ EA. SF” (SPACE BEFORE THE ‘E’ AND AFTER THE ‘.’)

Example “file.bmp” has EA’s in “file.bmp EA. SF”

• This file is hidden by the OS/2 driver and cannot
be seen. It is however visible when using other
operating systems!

• The file has a similar format as a file created with
EAUTIL

Why Extended attributes

• Additional information about a file is handy:

 Examples:
The icon of an executable is in an EA
The long filename
The codepage used to encode the data
The version number of a file
etc

Extended attributes OS/2

• There are two major types of EA’s in OS/2
– Critical
– Non critical

(I have not yet found a critical EA!)

(Program will still work i.e. missing
icon)

Extended attributes OS/2

• Each EA’s has an identification or type tag.

• This is done to indicate the format of the
EA and the data and to enable correct
decoding of the information.

• Some EA’s contain EA’s within an EA!

Extended Attribute Types

There are a number of predefined EA types

EAT_BINARY FFFE Binary data

EAT_ASCII FFFD ASCII text

EAT_BITMAP FFFB Bit map data

EAT_METAFILE FFFA Metafile data

EAT_ICON FFF9 Icon data

EAT_EA FFEE ASCII name of another EA associated
with the file

 EAT_MVMT FFDF Multi-Valued, Multi-Typed data

EAT_MVST FFDE Multi-Valued, Single-Typed data

 EAT_ASN1 FFDD ASN.1 field data; an ISO EA standard

EA Names

– An EA name is:

• either for a Standard Extended Attribute
(SEA) which is defined by the system and
always starts with a . (dot)

• Free format

SEA´s
All Standard Extended Attributes start with a dot ´.´

 The SEA´s are:

.APPTYPE .ASSOCTABLE

.CHECKSUM .CLASSINFO

.CODEPAGE .COMMENTS*

.EXPAND .HISTORY

.ICON* .ICON1*

.ICONPOS .KEYPHRASES*

.LONGNAME .MMPREF_MMIMAGE

.PREVNAME .SUBJECT*

.TYPE .VERSION

* EA MANIPULATION VIA THE WPS

Some common non SEA
EA’s

FONT_INFO MMBITRATE

MMBPS MMCHANNELS

MMNUMAUDIOBYTES MMPLAYTIME

MMPLAYTIMEMS MMSAMPLERATE

OPTIONALDRIVERFILES REQUIREDDRIVERFILES

REXX.LITERALPOOL REXX.METACONTROL

REXX.TOKENSIMAGE REXX.VARIABLEBUF

VENDORNAME

Standard Extend Attributes
Formats
.ASSOCTABLE

The .ASSOCTABLE extended attribute (EA) contains information that associates data files with the
applications that create them or that know how to use them. The .ASSOCTABLE extended attribute
enables an application to indicate the type, extension, and icon for the data files it recognizes. The
.ASSOCTABLE EA also contains an ownership flag. This tells OS/2 which application to run when the
user double-clicks the mouse on a given data file.

Because programs can understand and reference data files generated by other programs, this EA
can be used to link a program with those files.

The name of this EA consists of the string ".ASSOCTABLE". The value of this EA contains
application information and consists of multi-valued, multi-typed fields that link the application
with:

the file type (that is, the value of a .TYPE EA), the file extension, and icon data for data
files that it generates or references.

The .ASSOCTABLE EA associates icons by file-type. The data file's file-type is indicated in the .TYPE
EA, or, if the data file does not have a .TYPE EA, by the extension.

This data can be installed automatically by OS/2.
The format of the EA is as follows.

 EAT_MVMT 0000 0004 EAT_ASCII .TYPE name
 EAT_ASCII file extension
 EAT_BINARY flags
 EAT_ICON icon data
 .
 END

Standard Extend Attributes
Formats
.ASSOCTABLE

.

The association_name is the name of a file type that the Resource Compiler understands. (This is
the same name found in the .TYPE field of data files.)

The extension is the three letter file extension that is used to identify files of this type, if they have
no .TYPE EA entry. (Three letter extensions should be used so that FAT file systems can make use
of this EA). This field can be empty.

The icon_filename is the name of the file that contains the icon that is to be used to represent this
file type. (This field can also be empty.)

The .ASSOCTABLE flag indicates that the program is the default application for data files with the
specified type. This determines the program OS/2 will start when the file is double-clicked with the
mouse.

If more than one program has marked itself as the EAF_DEFAULTOWNER for a particular data
file .TYPE, OS/2 will not know which program to run when the file of this .TYPE is double-clicked on
with the mouse. If no program is marked as the EAF_DEFAULTOWNER for a particular data file
.TYPE, OS/2 will be similarly confused. In both cases, OS/2 provides the user with a list of
applications that understand the file .TYPE, regardless of whether the application is the owner or
not. The user selects the program to run from this list.

The flag entry indicates whether the application owns the file or merely recognizes the .TYPE. If
this flag is set, the entry describing data files of this type cannot be edited. This flag is specified if
a previously defined icon in the ASSOCTABLE is to be reused. Entries with this flag set have no
icon data defined. The icon used for this entry will be the icon used for the previous entry.

EAF_ flags can be ORed together when specified in the ASSOCTABLE. The EAF_ flags are defined in
PMWIN.H and PMWIN.INC.

Standard Extend Attributes
Formats
.ASSOCTABLE

.ASSOCTABLE Example
For example, My_Company's application, My_Application, generates or references data files that
have the following .TYPE names:

 My_Company My_Application documentation
 My_Company My_Application macros
 My_Company My_Application spreadsheet
 My_Company My_Application chart
 Your_Company Your_Application forecast

The source for the .ASSOCTABLE extended attribute in the resource file for My_Application could
look like the following.

 ASSOCTABLE
 BEGIN
 "My_Company My_Application documentation", "DOC", EAF_DEFAULTOWNER, My_App.ICO
 "My_Company My_Application macros", "MAC", EAF_DEFAULTOWNER+EAF_REUSEICON
 "My_Company My_Application spreadsheet", "SPR", EAF_DEFAULTOWNER+EAF_REUSEICON
 "My_Company My_Application chart", "CHT", EAF_DEFAULTOWNER+EAF_REUSEICON
 "Your_Company Your_Application forecast", "FOR", 0
 END

Standard Extend Attributes
Formats
.ASSOCTABLE

My_Application can load and use some files generated by Your_Application. However, because
My_Application is not the default owner of those files, OS/2 does not run My_Application when the
user double-clicks on the files with the mouse.

The following example illustrates how the value of the .ASSOCTABLE EA for My_Application might
look. It is a multi-valued, multi-typed EA with five multi-valued, multi-typed entries (one for each
file type referenced or generated by the application).

 EAT_MVMT 0000 0005 ; There are 5 associated file types

 EAT_MVMT 0000 0004 ; Description of 1st associated file type
 EAT_ASCII 0027 My_Company My_Application documentation ; File type
 EAT_ASCII 0003 DOC ; File extension
 EAT_BINARY flags ; Flags
 EAT_ASCII icon data ; Physical icon data

 EAT_MVMT 0000 0004 ; Description of 2nd associated file type
 EAT_ASCII 0020 My_Company My_Application macros
 EAT_ASCII 0003 MAC
 EAT_BINARY flags
 EAT_ICON icon data

.CLASSINFO
 The .CLASSINFO extended attribute saves the instance data for a file system object.

.CODEPAGE
The .CODEPAGE extended attribute (EA) contains the code page for the file. If this extended
attribute is not provided, the code page of the file is the system default or is defined by the
application.
The code page of the EA data associated with the file is assumed to be that of the file, unless
the EA entry is specifically overridden in the code page field in the multi-valued extended
attribute data type.

.COMMENTS
The .COMMENTS extended attribute (EA) contains miscellaneous notes or reminders about
the file (for example, peculiarities, restrictions, or requirements).
The name of this EA consists of the string ".COMMENT". The value of this EA consists of
miscellaneous notes and can be multi-valued and of any type.

Standard Extend Attributes
Formats

.CLASSINFO, .CODEPAGE, .COMMENTS

Standard Extend Attributes
Formats

.HISTORY

The .HISTORY extended attribute (EA) contains the modification history for a file object, indicating
the author of the file and all subsequent changes. Each entry is separate field in a multi-value field
and consists of be ASCII characters only.

The name of this EA consists of the string ".HISTORY". The value of this EA contains the
modification history for a file object and can be multi-valued, with each action entry described in a
separate field.

Each entry in the .HISTORY field has the following format:

 PERSON ACTION(created, changed or printed) DATE

For example, the following .HISTORY extended attribute contains two entries:

 EAT_MVMT 0000 0002
 EAT_ASCII 0017 Joe Created 2/10/88
 EAT_ASCII 0017 Harry Changed 2/11/88

This extended attribute can potentially become quite large. To avoid unwanted growth, an
application can let the user decide when an entry should be added to this extended attribute. For
example, there are some cases when it is important to note when a document is printed. However,
it is probably unnecessary to note it every time the file is printed.

Standard Extend Attributes
Formats

.ICON

The .ICON extended attribute (EA) specifies the icon to be used for the file representation, for
example when the application is minimized. This extended attribute contains the physical icon
data used to represent the file object.

If there is no .ICON EA, OS/2 can use the .TYPE entry to determine a default icon to use for the
particular file. If there is an .ICON entry, however, it is used instead of the default icon.

The name of this EA consists of the string ".ICON". The value of this EA contains the physical icon
data and has the following format:
 EAT_ICON data_length data
 WORD DWORD

The data is of type BITMAPARRAYFILEHEADER and is used to specify an array of one device-
dependent and one device-independent icon bit maps. The GpiLoadBitmap and WinLoadPointer
functions support this icon file format.
It is best to provide as much icon information as possible. Ideally, an icon should be 64-by-64 bits
in 8-color, device-independent format.

Standard Extend Attributes
Formats

.ICON

The Icon Editor is used to create the icon, which is saved in an icon file. The .ICON extended
attribute for an application is created by the Resource Compiler as part of the compile process by
specifying the DEFAULTICON keyword, as in:
 DEFAULTICON <filename.ico>

This keyword uses the icon definition contained in the specified icon file (FILENAME.ICO) to create
the .ICON EA for the application.

Applications store the binary icon data in this extended attribute. To install icons for data files, the
applications can use the .ASSOCTABLE extended attribute, or DosSetPathInfo.

Standard Extend Attributes
Formats
.ICON1, ICONPOS

.ICON1
The .ICON1 extended attribute stores the animation icon (for example, the open folder icon)
for a folder.

.ICONPOS
The .ICONPOS extended attribute saves the icon positioning information for a folder.

Standard Extend Attributes
Formats
.KEYPHRASES

The .KEYPHRASES extended attribute (EA) contains key text phrases for the file. Such phrases can
be used in performing a database-type search or in helping the user understand the nature of the
file.

The name of this EA consists of the string ".KEYPHRASES". The value of this EA consists of key
phrases in ASCII.

Key phrases are represented as ASCII characters. Multiple key phrases can be stored in the value
of this extended attribute, each stored in a separate entry in a multi-valued field.

For example, the following extended attribute contains three key phrases:

 EAT_MVST 0000 0003 EAT_ASCII 0008 ABC Inc.
 EAT_ASCII 000A Salesman A
 EAT_ASCII 000F Product X sales

If there is more than one key phrase, each should be stored in a separate entry in a multi-value
field.

Standard Extend Attributes
Formats

.PREVNAME, .SUBJECT

.PREVNAME
The .PREVNAME extended attribute saves the old class name when the user requests that an
object, which is a descendent of WPDataFile, becomes another subclass of WPDataFile.

.SUBJECT
The .SUBJECT extended attribute (EA) contains a brief summary of the content or purpose of
the file object it is associated with.

The name of this EA consists of the string ".SUBJECT". The value of this EA consists of a
single-valued ASCII string that contains the purpose of the file object.

The length of this field must be less than 40 character

Standard Extend Attributes
Formats

.TYPE

The .TYPE extended attribute (EA) indicates the file-type of the file object it is associated with. It is
similar to a file name extension.

The name of this EA consists of the string ".TYPE". The value of this EA contains the file object's
file-type. The following file types are predefined:

Plain text
OS/2 command file DOS command file
Executable Metafile
Bit map Icon
Binary data Dynamic link library
C code Pascal code
BASIC code COBOL code
FORTRAN code Assembler code
Library Resource file
Object code

Data files only require identification of the file type. For data files without EAs, the file type is
derived from the file extension, if there is one.

Standard Extend Attributes
Formats

.TYPE
File object types are represented as length-preceded ASCII strings, uniquely identifying the file
object's type. This identifier is referenced within the application's .ASSOCTABLE EA in order to bind
the data file type to the application. It is important that this name be a unique identifier because
all file type names are public data. For example, if application A and application B both had a type
name of SPREADSHEET, the filing system would not be able to identify A's SPREADSHEET from B's
SPREADSHEET.

The recommended convention for defining file object types is:

Company_name
Application_name
Application-specific_name

For example, spreadsheet files generated by My_Application written by My_Company might have a
file object type of the following.

 My_Company My_Application Spreadsheet

Type names must be ASCII characters and case is significant.

Note: The performance of extended attributes is dependent on the file system. Because some file
systems store extended attributes in first-in/first-out (FIFO) order, it is important to write the .TYPE
entry first so OS/2 can access that information quickly.

Standard Extend Attributes
Formats

.VERSION

The .VERSION extended attribute (EA) contains the version number of the file format, as shown
below.

 My_Application 1.0

The name of this EA consists of the string ".VERSION". The value of this EA contains the file object
version number. This attribute can be ASCII or binary. Only the application that created the file
object should modify the value of this EA. It can also be used to indicate an application or dynamic
link library version number.

What can you do with EA’s

• Certain EA’s are directly available to you and can
be manipulated via the Workplace Shell :-

EA =
.SUBJECT

EA =
.COMMENTS

EA =
.KEYPHRASES

What can you do with EA’s

• Certain EA’s are directly available to you
and can be manipulated via the Workplace
Shell :-

EA =
.LONGNAME

Copying EA’s

When copying files, EA’s are automatically
copied using either the WPS or the ‘copy’
command from the command line or any EA
aware program

But only when the destination file system
supports EA’s!

If a file has a .LONGNAME EA is edited and
then saved using the SaveAs option then in
most cases the value of this EA is not
updated to reflect the new name!

Copying EA’s

If the destination does not support EA’s
then:
–The workplace shell will not give an
error!
–The command line copy command may
give an error if the /F option is used
–4os2 copy command does not have
the /F option

The only true check is to write and then read an
EA to see if its there!

EA utility Programs
EABROWSE

EABROWSE - Henk Kelder (part of
WPTOOLS)

–Displays all sorts of EA’s on a file per file
basis together with metadata

–Cannot modify data

–Can delete an EA

EA utility Programs
SearchPlus

SearchPlus – Keith Merrington

–Can find files with:
• EA’s
• specific EA’s
• Specific data in a (specific) EA

EA utility Programs
LongNameCheck

LongNameCheck – Keith Merrington

–Can find & select files with duplicate
information in the .LONGNAME attribute
(per directory)

–Can identify possible incorrect
.LONGNAME information
–Replace .LONGNAME data with real
name
• Edit .LONGNAME name
• Restore .LONGNAME data

EA utility Programs
EA Viewer

EA Viewer – M Kimes (part of FM/2)

–Displays all sorts of EA’s on a file per file
basis together with metadata
–Can modify EA data for ASCII EA types
–Can Add ASCII and MultiValue ASCII EA’s
–Can Delete any EA

EA utility Programs
EAUtil

Can split and join EA´s from a file
 /S split /R replace
 /J join /O overwrite /M merge
 /P (preserve)

EAutil output file structure
Bytes Description

0 - 3 Size of file
4 - 5 Length EA Name
6 - 7 Size of EA
8 - n EA Name
n+1 EA DATA where bytes:
 0 - 1 EAType

2 Critical / noncritical FLAG

 3 Size of EA

x Length EA Name
x+2 Size of next EA
x+4 EA Name
Etc.

EA Facts

There is no way to see if an EA has been
changed or deleted except by knowing
what EA’s were previously associated with
a file or directory and if the size of the EA
has changed

EA’s - The unwritten rule

When an EA is changed/added using the
WPI the last write date is unchanged!

When an EA is changed/added using the
WPI the archive bit is unchanged!

A programmer must take care of this
when writing an EA as the system will set
the archive bit and update the last write
date!

EA’s & the relevant API’s

The following API’s are available with regard to Extended
attributes:

DosFindFirst - Get size of EA’s or read EA &
data,specified EA(s)
DosFindNext “ “
DosQueryFileInfo - Get size of EA’s or read EA & data,
specified EA(s)
DosQueryPathInfo “ “
DosEnumAttributes - Enumerate EA’s (read EA’s and data)
DosOpen - Write EA’s & data
DosSetFileInfo - Write Extended Attributes
DosSetPathInfo - Write Extended Attributes

Since DosQueryFileInfo & DosSetFileInfo both require a handle to a
file they cannot be used for EA’s of a directory as it is not possible
to obtain a handle for a directory!

EA’s & the relevant API’s
DosFindFirst & DosFindNext

ulrc = DosFindFirst(pszFileSpec, phdir, flAttribute,
pfindbuf, cbBuf, pcFileNames, ulInfoLevel);

The level of file info returned depends on ulInfoLevel
FIL_STANDARD - file size and attribute info

 FILEFINDBUF3 data structure

FIL_QUERYEASIZE - The size of all EA’s for this file
 FILEFINDBUF4 data structure

The buffer required to hold the entire EA set is less than or
equal to twice the size of the EA size!

FIL_QUERYEASFROMLIST - EA’s as specified in EAOP2
structure

EA’s & the relevant API’s
DosQueryFileInfo & DosQueryPathInfo

ulrc = DosQueryPathInfo(pszPathName, ulInfoLevel,
pInfoBuf, cbInfoBuf);
The level of file info returned depends on ulInfoLevel

FIL_STANDARD - file size and attribute info
 FILESTATUS3 data structure

FIL_QUERYEASIZE - The size of all EA’s for this file
 FILESTATUS4 data structure

The buffer required to hold the entire EA set is less than or
equal to twice the size of the EA size!

FIL_QUERYEASFROMLIST - EA’s as specified in
EAOP2 structure

EA’s & the relevant API’s
DosEnumAttributes

ulrc = DosEnumAttribute(ulRefType, pvFile, ulEntry,
pvBuf,

cbBuf, pulCount, ulInfoLevel);

The level of file info returned depends on ulInfoLevel BUT
only one level is available!
Data returned (pvBuf) is in the FEA2 format

EA’s & the relevant API’s
DosOpen

ulrc = DosOpen (pszFileName, pHf, pulAction, cbFile,
ulAttribute,fsOpenFlags, fsOpenMode,

peaop2)

EA’s to be written must be contained in a structure of the type
FEA2 as indicated by peaop2.
This is only used when opening a new file, truncating or
replacing an existing file!

EA’s & the relevant API’s
DosSetFileInfo & DosSetPathInfo

ulrc = DosSetPathInfo(pszPathName, ulInfoLevel,
pInfoBuf, cbInfoBuf, flOptions);

The level of file info set depends on ulInfoLevel

FIL_STANDARD - file size and attribute info
 FILEFINDBUF3 data structure

FIL_QUERYEASIZE - The EA’s to be written in presented
in a

 EAOP2 data structure

EA’s & the relevant API’s
Structures

FILEFINDBUF3, FILEFINDBUF4 and FILESTATUS3 , FILESTATUS4 data
structures

 ULONG oNextEntryOffset; Offset of next entry.
 FDATE fdateCreation; Date of file creation.
 FTIME ftimeCreation; Time of file creation.
 FDATE fdateLastAccess; Date of last access.
 FTIME ftimeLastAccess; Time of last access.
 FDATE fdateLastWrite; Date of last write.
 FTIME ftimeLastWrite; Time of last write.
 ULONG cbFile; Size of file.
 ULONG cbFileAlloc; Allocated size.
 ULONG attrFile; File attributes.
 ULONG cbList; Size of the file's extended
attributes.
 UCHAR cchName; Length of file name.
 CHAR achName[CCHMAXPATHCOMP]; File name including null
terminator.

*Only in FILEFINDBUF3 and FILEFINDBUF4 data structure
*Only in FILEFINDBUF4 and FILESTATUS4 data structure

EA’s & the relevant API’s
Structures

cbNextEntryOffset (4
bytes)
cbName (1 byte)

szName (cbName
bytes)

cbNextEntryOffset (4
bytes)
fEA (1 byte)

EA data (cbValue
bytes)

cbName (1 byte)

cbValue (2 bytes)

szName (cbName
bytes)

EAOP2

fpGEA2List

fpFEA2List

cbList
(4 bytes)

cbList
(4 bytes)

list

list

Reading an EA

The procedure for reading an EA is:
–Get size of EA’s in a file/directory using the
parameter FIL_QUERYEASIZE(L)
 (use DosFindFirst, DosFindNext, or
DosQueryFileInfo/DosQueryPathInfo)

–Reserve memory

–Enumerate the EA’s in a loop using
DosEnumAttribute

Writing an EA

The procedure for writing an EA is:
–Reserve memory and create the EA
structures taking care that each list entry
is on a double-word boundary
–Fill the structure with the EA information
–Write EA’s using DosOpen or
DosSetFileInfo /DosSetPathInfo

EA Programming
information

The Art of OS/2 Programming
(http://www.laser.ru/evgen/articles/ARTofOS2/aos2p_4.html)

Encapsulating Extended Attributes - Part 1
& 2
http://www.edm2.com/0404/eas1.html

Extended Attributes - what are they and
how can you use them
www.howzatt.demon.co.uk/articles/06may93.html

http://www.laser.ru/evgen/articles/ARTofOS2/aos2p_4.html
http://www.edm2.com/0404/eas1.html
http://www.howzatt.demon.co.uk/articles/06may93.html
http://www.howzatt.demon.co.uk/articles/06may93.html
http://www.howzatt.demon.co.uk/articles/06may93.html

THANK YOU

Any Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

